
Chapter 6

From Metabolic Reactions to Networks and Pathways

Masanori Arita

Abstract

Enzymatic reactions form a hypergraph structure and their translation into a graph structure accompanies
an information loss. This chapter introduces well-known topological transformations from metabolic
reactions to a graph, and discusses their advantages and disadvantages. Also discussed is the legitimacy of
defining cofactors or currency metabolites, and suitable application area of each representation.
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1. Introduction

After the publication of Barabási and Albert’s (1) inspiring work,
computing the degree exponent of a network became a standard
process in analyzingbiological networks. Irrespective of the network
under investigation, researchers routinely discuss the evolutionary
implication(s) of its hubs, motifs, or modules. They also associate
characteristics of the network, such as the average path length or
clustering coefficient with biological implications (Table 1). These
properties, called network metrics, are actively applied to character-
ize and classify the network topology while ignoring dynamics
(see Chapter 13) (2). Metabolism was the first such application (3)
and ever since, many variations have been proposed.

The notable characteristic of network biology, i.e., metric-
based understanding of biology, is its topological representation
and associated discretization. In real metabolism, each reaction
includes multiple substrates and products. Enzymes are regulated
by multiple components and protein modules, and their reaction
mechanism is characterized by various physicochemical quantitative
parameters, such as the Gibbs energy and enzyme velocity. In the
analysis of network biology, on the other hand, quantitative factors
are reduced to a simple graph structure and the main focus is on the
degree distribution, reachability between nodes, or modularity.
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There are advantages and disadvantages in the discretized
representation. One important benefit is its simplicity. Very large-
scale networks are amenable to algorithmic analyses as a simple
graph but not as a more complicated representation (e.g., differen-
tial equations). Also, facile computation and simplistic interpreta-
tion could attract many computational biologists into this research
field. On the backstage, however, many biological aspects are
overlooked; as will be explained, even the original network topol-
ogy may be sacrificed. In this chapter, we introduce topological
transformations from metabolic reactions to graph representation
and discuss their advantages and disadvantages. We also discuss
the legitimacy of defining cofactors or currency metabolites.

Table 1
Network metrics: well-known parameters used to characterize the topology
of networks

Degree, density, and
assortativity

Degree is the number of edges for each node. High-degree nodes are called
hubs

Density is the proportion of edges for each node to the maximum degree.
Hubs are high-density nodes

Clustering coefficient (CC) is the average of the edge density of immediate
neighbors for a given node. Natural networks are known to have high
(ca.0.3 and up) CCs

Assortativity is a correlation coefficient between the degree distributions of
node neighbors. When many nodes are connected with nodes of different
degrees, the network is called dissortative

Distance and path Distance between nodes is the least number of edges to connect them, i.e.,
the length of their shortest path

Path is the actual sequence of edges. Average path length (APL) is the average
of distances between all pairs of nodes. Many natural networks are known
to have small APLs

Centrality Centrality is the criterion to determine the “center” of the network in an
undirected graph. (In a directed graph, the equivalent notion is called
prestige.)

Degree-centrality chooses the most-connected hub as the center.
Closeness centrality chooses the node whose average distance to all other nodes

is the minimum
Betweenness centrality chooses the node which are most used in shortest paths

between all pairs of nodes

Motif Motif is a small “building block” or frequently appearing pattern in the
network. Typically, all patterns up to five nodes are exhaustively searched in
the network. Well-known directed motifs include feed-forward and feed-
back loops (see Chapters 12 and 14)

Modularity Modularity is a degree of separation for sub-networks. Many natural
networks are known to have high modularity. The study on modularity is
immature and no clear definition exists
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2. Strategies
for Graph
Transformation

The graph structure is a collection of directed/undirected binary
relations defined as the paired set of nodes and edges. Each
relation, or edge, has only one source and one target node. (The
source and target are not distinguished in the case of undirected
graphs.) Originally, standard metabolic reactions catalyze multiple
substrates into products. Instead of a graph, they form a hyper-
graph where each edge may connect any number of nodes, as
represented by a box in Fig. 1a. Information on metabolite
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Fig. 1. Three network representations (b–d) for the L-ornithine biosynthetic pathway (a). (a) Bipartite representation;
(b) fully connected substrate graph; (c) substrate graph without currency metabolites; and (d) substrate–product graph.
Dotted and solid lines indicate the acetyl moiety and the carbon backbone of L-glutamate, respectively. Dotted lines are
missed in the substrate graph with approximate structural relationships.
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structures is implicitly represented in this hypergraph format, and
the structural information can be easily lost in the reduction of
metabolism into a graph. Depending on their purposes, several
transformation strategies exist for mapping the metabolic hyper-
graph into a graph. Information loss is unavoidable to some
extent, and no transformation strategy is perfect. To explain the
respective benefit(s) of transformation, we introduce major stra-
tegies one by one, using L-ornithine biosynthesis, the pathway
from L-glutamate to L-ornithine, as an example (Fig. 1).

2.1. Fully Connected

Substrate Graph

As in the traditional metabolic chart, graph nodes represent
metabolites in the substrate graph. Nodes are linked if they parti-
cipate in the same reaction (Fig. 1b). In the fully connected
representation, substrates in a reaction are fully linked with their
products, i.e., each reaction is transformed to a complete bipartite
graph. The network therefore portrays the relation by “reaction
membership.” Apparently, frequently occurring metabolites in
reactions become the most connected metabolites or hubs.

In their pioneering study, Jeong et al. (3) constructed fully
connected substrate graphs for 43 organisms representing three
domains of life. They “unexpectedly” found that the average path
length of the network (APL; see Table 1 for definition) was identical
for all organisms (around 3–4 steps), and the ranking of the most
connected metabolites was practically identical. In order of fre-
quency, the hubs were H2O, ADP, orthophosphate (P), ATP,
L-glutamate, NADP+, pyrophosphate (PP), NAD+, NADPH, and
NADH (Table 2). These metabolites are usually referred to as

Table 2
Network hubs in different graph representations for Escherichia coli metabolism

Jeong et al. (3) Fell and Wagner (4) Ma and Zeng (9) Arita (12)

H2O L-Glutamate Glycerate 3P CO2

ADP Pyruvate D-Ribose 5P Pyruvate

P Coenzyme A Acetyl CoA Acetyl CoA

ATP a-Ketoglutarate Pyruvate ATP

L-Glutamate L-Glutamine D-Xylulose 5P D-Glucose

NADP+
L-Aspartate D-Fructose 6P L-Glutamate

PP Acetyl CoA 5P-D-ribose 1PP D-Galactose

NAD+ Phosphoribosyl PP L-Glutamate Coenzyme A

NADPH Tetrahydrofolate D-Glyceraldehyde 3P S-adenosyl L-methionine

NADH Succinate L-Aspartate 5P-D-ribose 1PP

The list of top ten hub metabolites for each graph transformation. The list is a reproduction from Arita
(12). P (ortho)phosphate, PP pyrophosphate
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inorganics or cofactors. Jeong et al. (3) argued that “the same highly
connected substrates may provide the connections between mod-
ules responsible for distinct metabolic functions.” Indeed, these
metabolites function as a shortcut to achieve the small APL, as
L-glutamate is directly linked with L-ornithine in Fig. 1b.

2.2. Substrate Graph

Without Currency

Metabolites

For biochemists, inorganics and cofactors are minor players.
In the traditional metabolic chart, they are depicted in smaller
fonts and their linkage is often unattended. Some cofactors have
been called currency metabolites because of their ubiquity.
To exclude such currency metabolites and inorganics from the
substrate graph, Fell and Wagner (4) manually specified hub
metabolites to be excluded in their network reconstruction in
Escherichia coli (Fig. 1c). Their removal list included ATP,
ADP, NAD+, NADP+, NADH, NADPH, CO2, ammonia, sulfate,
thioredoxin, P, and PP. That is, except for L-glutamate, all top ten
hubs in the work of Jeong et al. were removed and the remaining
hub metabolites were brought forward to form the new ten hubs:
L-glutamate, pyruvate, Coenzyme A (CoA), a-ketoglutarate,
L-glutamine, L-aspartate, acetyl CoA, phosphoribosyl PP, tetrahy-
drofolate, and succinate.

The removal of currency metabolites is the most popular
procedure in metabolic analysis; importantly, it does not change
the topological statistics that are found in the fully connected,
bipartite graph representation (4). In other words, currency meta-
bolites are carefully chosen so that the resulting network retains
the network distance, modularity, and other important properties
of the metabolism (5, 6). In this sense, the decision is inevitably
artificial and context-dependent. For example, Wagner and Fell
(7) argued that L-glutamate is an important hub based on its
ranking, but its high degree originated from many amino-transfer
reactions, where L-glutamate and a-ketoglutarate function as
amino-group donor and acceptor, respectively. They not only
play important roles in amino acid metabolism, but they also
function as cofactors in the amino-group transfer. Likewise, cur-
rency metabolites should not be removed from their own
biosynthesis/degradation pathways. Clearly, the dichotomy of
metabolites between currency and commodity (noncurrency) is
unacceptable. Recent trends focus on network modularity rather
than hubs (6, 8), but the same observation applies. It is a funda-
mental problem in the modern network analysis.

2.3. Substrate Graph

with Structural

Relationship

One way to ensure the proper treatment of currency metabolites is
to verify each transformation manually. Ma and Zeng (9) manually
specified edges between substrates and products for over 3,000
reactions so that edges connect structurally related nodes only.
Their rule of thumb was to link moieties that share more than two
carbons, thus overlooking the methyl and acetyl transfers and
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noncarbon atoms (Fig. 1d). Later, Rahman et al. (10) proposed
the use of structural similarity to automatically obtain the same
effect in their Pathway Hunter Tool. The good news is that this
method does not raise the dichotomy between currency and
commodity metabolites. Its disadvantage however, lies in the
bias originating from the number of reactions used. Because of
this bias, the top ten hubs Ma and Zeng identified in the E. coli
network included D-xylulose 5P and D-ribose 5P (Table 2), which
play relatively minor roles from the metabolic perspective.

The direct reflection of the number of reactions as node
degrees represents another fundamental problem regardless of
the assignment of currency metabolites. Metabolic reactions for
genes are often incomplete and ambiguous. Many enzymes
exhibit broad substrate specificity and they are sometimes found
to perform alternative functions. Such ambiguity is exemplified
in the over 500 reassignments of the EC numbers (denoted as
transferred entries in the EC hierarchy) and the frequent use
of generic terms, such as “amino acid,” “alcohol,” “acyl,” or
“long-chain,” in the systematic names of enzymes. Since such
generic terms correspond to multiple substrates, the number of
reactions corresponding to a given set of EC numbers may vary
depending on the interpretation. Therefore, direct counting of
the number of reactions is not a robust way for estimating meta-
bolic hubs. For example, EC 2.3.1.85 (acyl-CoA:malonyl-CoA
C-acyltransferase) is associated with as many as 30 reactions in
the KEGG RPAIR database (in fact, many of them are not acyl-
transferase reactions and are automatically associated with this EC
number according to an attached comment by the IUBMB) (11).
If all reactions are automatically transformed to a graph represen-
tation, the common cofactors for this EC reaction, CoA and
NADPs, receive too many graph edges. Still, the molecular struc-
ture of the main substrate, acyl CoA, remains ambiguous. The
resulting graph structure depends on how these reactions are
curated for each target species (including the removal of in-
appropriate assignments). In general, such curation problem has
been ignored, especially by computational biologists, possibly
because it is time consuming and its discussion is of little
computational interest.

2.4. Substrate–

Product Graph

To reduce the bias originating from the interpretation of multiple
reactions, a different abstraction has been proposed; we call it the
substrate–product graph (12). Instead of counting the number of
reactions, this method counts the number of structural transfor-
mations by decomposing each reaction into a set of atomic map-
pings, and is independently employed to construct the KEGG
RPAIR database (11). Atomic mapping comprises a set of atomic
position pairs for a substrate–product relationship corresponding
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to a migrating moiety in the reaction. For example, atomic
mapping between ATP and ADP represents a loss of orthophos-
phate from ATP (kinase) and mapping between L-glutamate and
a-ketoglutarate represents an exchange of an amino and oxo
group (aminotransferase). In the substrate–product graph, nodes
correspond to metabolites as in the substrate graph, but edges
correspond to atomic mappings. No matter how often each
atomic mapping appears in the reaction set (e.g., the atomic
mapping between ATP and ADP, or NAD and NADH, appears
quite frequently), only one edge is drawn for each structural
correspondence. Since a cofactor is always involved in the same
reaction pattern, its function corresponds to only one atomic
mapping and the node degree is kept small. Most importantly,
this representation can correct network statistics. Specifically,
the small APL of the metabolic network was lost in this represen-
tation (13). The top ten hubs became CO2, pyruvate, acetyl CoA,
ATP, D-glucose, L-glutamate, D-galactose, CoA, S-adenosyl
L-methionine, and phosphoribosyl PP. CO2 was the topmost
hub because of the various decarboxylation reactions. Likewise,
the high rank of acetyl CoA and CoA resulted from many acyl
transfers. In this representation, we reconfirmed the importance
of L-glutamate pointed out by Wagner and Fell (7), and the
statistics also implies the ancientry of the purine-related pathways
from the plasticity of the adenosine moiety. Based on protein
folds, the purine pathway was reported to be one of the most
ancient subnetworks (14).

By focusing on the number of structural changes, the
substrate–product graph concisely represents the structural plas-
ticity in the metabolic network (Fig. 1d). The reduction to atomic
mappings has both merits and demerits. First, it is robust to the
ambiguity in genome annotations, such as the interpretation of
general reactions. On the other hand, it is computationally expen-
sive and loses information derived from redundancies in the reac-
tion network. Nonetheless, the method is slowly gaining
popularity. Blum and Kohlbacher (15) proposed a degree-
weighted version of the substrate–product graph. Pitkanen et al.
(16) presented a new, practical method that can detect branched
pathways at atomic resolution. Faust et al. (17) used the RPAIR
database to reconstruct the substrate–product graph and opti-
mized weighting schemes for metabolic pathway finding (also
see Chapter 7). All approaches reported significant improvement
in metabolic analyses through the consideration of structural
relationships.

2.5. Reaction Graph The reaction graph, or enzyme-centric graph, is a yet another
representation of a metabolic network (7). In this graph, each
reaction corresponds to a graph node; an edge is drawn if two
reactions share a substrate or product. The representation is a dual
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image of the substrate graph: nodes and edges in the reaction
graph correspond to edges and nodes in the substrate graph. Since
there is a one-to-one correspondence between reaction- and sub-
strate graphs, both representations contain the same amount of
information. Therefore, the benefits and disadvantages of the
substrate graph also apply to the reaction graph and it is not
worthwhile to make comparisons as long as the graphs are dual
images.

2.6. Bipartite Graph Bipartite graph is a graph with two types of nodes, where either
type is linked to the other type only. A metabolic network can be
naturally mapped to a bipartite representation with metabolite-
and reaction nodes. It represents association of metabolites with
their reactions, and is often used for network visualization
(Fig. 1a). Strictly speaking, the bipartite representation does not
constrain that all substrates in a reaction should be together
consumed to produce all its products. Also, the representation
does not distinguish incoming edges or outgoing edges (in
this sense, Fig. 1a is not an accurate bipartite view because it
uses two kinds of edges, straight and curved, to denote co-
enzymes). In summary, the representation does not interfere
with the above mentioned network interpretations because their
advantages and disadvantages are directly applicable to the bipar-
tite case.

3. Available Data
Resources and
Their Usage

In the previous section, we reviewed six major graph representa-
tions for enzymatic reactions. Reaction data are available on
many Web sites (Table 3). The original authoritative source is
the IUBMB enzyme nomenclature, where EC numbers are
assigned and updated (18). A reliable source of kinetic informa-
tion is the BRENDA database, where detailed kinetic parameters
and substrate specificity are available for each organism (19).
Most metabolic information is based on these databases, and
the network reconstruction usually undergoes organism-specific
modification/curation. Discretized metabolic data should be
applied with care because each representation has its original
purpose. Here, we introduce a few important tips to be
considered.

3.1. Different

Databases Use

Different Metabolite

Names

Unfortunately, metabolite names are no more standardized than
protein names. Standardization of metabolite names must precede
network reconstruction. For example, a-ketoglutarate can be
written as 2-oxoglutarate, oxoglutaric acid, 2-ketoglutarate, or
a-ketoglutaric acid. The LIGAND section in the KEGG database
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is a good source of such synonyms (20). It must be noted that
many enzymatic reactions also use generic names, such as “alco-
hol” or “amino acid.” Many reactions do not specify stereochemi-
cal information (e.g., serine instead of L-serine). Such
discrepancies must be manually resolved by referencing genomic
information in network reconstruction. Already curated data may
be available for some model organisms (Table 3), but otherwise,
manual curation is a necessary step. Not a few computational
studies bulk-download reaction data from the KEGG- and other
databases to reconstruct metabolic networks. It is not easy to
verify the extent of curation from the brief description of their
reconstruction policy, but without standardization, the results are
not sufficiently accurate for an estimation of the global network
properties.

3.2. Not All Connected

Reactions form

Pathways

A metabolic pathway consists of a sequence of reactions through
which some structural moiety must be passed down. This prereq-
uisite is not always satisfied by a graph path in the metabolic
network. In Fig. 1b, for example, the link between L-glutamate
and CoA, or between N-acetyl L-glutamate 5-semialdehyde and
a-ketoglutarate is not a valid pathway because there is no carbon
or nitrogen transfer between them. However, many studies com-
puted the shortest paths in the substrate graph to identify the
metrics of metabolic networks. It must be noted that such com-
putation does not reflect true metabolic pathways although it may
capture some general characteristics.

Table 3
Freely available data for reaction information

IUBMB Enzyme Nomenclature (http://
www.chem.qmul.ac.uk/iubmb/enzyme/)

Enzyme names and reactions for each EC number
with references

BRENDA (http://www.brenda-enzymes.
org/)

Organism, Km value, isozyme, and substrate
specificity information with references

MetaCyc (http://biocyc.org/metacyc/
index.shtml)

Species-specific enzyme and pathway information
for over 350 organisms with references

KEGG (http://www.genome.jp/kegg/
reaction/)

Substrate–product information for EC reactions
without resolving general names for over 1,100
organisms

BiGG (http://systemsbiology.ucsd.edu/
In_Silico_Organisms/)

Genome-scale metabolic reconstruction for over
30 organisms
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The directionality of reactions is another issue that causes
headaches. There are many discrepancies between databases on
directionality, and it is difficult to estimate directionality from
enzyme structures or catalytic formulas. K€ummel et al. (21) pro-
posed a heuristic algorithm to check reversibility based on the
Gibbs energy, but Maskow and von Stockar (22) argued that the
Gibbs energy does not facilitate determination of feasibility
without considering intracellular ionic strength, the pH value,
and the concentration of abundant metabolites. For now, it is
safer to assume that most reactions are reversible; irrever-
sible reactions are, for example, decarboxylation and cyclization
reactions.

3.3. Kinetic

Parameters Are

Measured In Vitro, Not

In Vivo

Kinetic parameters reported in the BRENDA and other databases
were measured in vitro assuming the classic model of Michaelis
and Menten (23). These parameters are good indicators for esti-
mating the relative efficiency of enzymes; however, their true
catalytic velocity within cells remains unknown. This is why not
every kinetic parameter is directly applicable to simulation studies.
Likewise, these values alone cannot indicate the reversibility of
reactions. These observations justify the importance of qualitative
studies because currently available parameters are not sufficient to
fully depict intracellular conditions.

4. Network
Applications:
Constraint-Based
or Graph-Theoretic
Approaches

There are two mainstreams in utilizing reconstructed meta-
bolic networks: the constraint-based- and the graph-theoretic
approach. The former focuses on the metabolic capability of an
organism in terms of metabolite fluxes and attempts to find the
basis of the possible flux space. In contrast, the graph approach
focuses on the metrics of metabolic networks and tries to under-
stand flux in terms of pathways.

4.1. Constraint-Based

Approach

This approach is best represented by flux balance analysis (FBA)
and the elementary flux mode (EFM) (24, 25). In these strategies,
the metabolic hypergraph is implemented as a matrix to solve its
linear constraints, and the basis of the flux space is called extreme
pathways or elementary modes, respectively (see Chapter 20)
(26). The main constraints are the steady-state hypothesis for
metabolites (no increase or decrease in their amounts) and the
capacity constraints for reactions (directionality and the maximum
value for flux). The elementary mode is more constrained in the
formalization of a metabolic pathway and therefore harder to
compute. The lack of scalability has been a bottleneck in the
application of the EFM, but a new scalable approach was recently
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presented by the EFM group (27). A detailed comparison
between FBA and EFM is available elsewhere (28).

The resolution of generic names and the gap filling of major
pathways are crucial steps for both strategies. Currently available
reconstructions need substantial updates to be called complete.
In the “complete” in silico strain (iJR904) of E. coli, for
example, biosynthesis for 64 metabolites is reported to be flawed
(29, 30). While gaps in many biosynthetic/degradation pathways
remain, manual verification of completeness is difficult. The
graph-theoretic representation of pathways is needed to fill these
pathway gaps.

4.2. Graph-Theoretic

Approach

To find metabolic pathways, the approach concentrates on the
topological aspects of the network. A commonly used method is
finding the shortest paths by tracking node connectivity (10, 12,
15–17) (also see Chapter 7). Since the direct application of the
shortest path algorithm to the substrate graph produces a huge
number of false-positive pathways, the substrate–product graph or
its alternative with atomic information is the proper choice. This
requirement is obvious especially when nitrogen or sulfur metab-
olism is considered. Another often overlooked problem is the
consideration of molecular symmetry in pathway finding algo-
rithms (11, 16). Since many molecules have symmetric atomic
positions, simple connection of atomic mappings, such as the
RPAIR information may miss important pathways. For example,
simplistic connection cannot reproduce the carbon fate in the
TCA cycle, where many symmetric molecules are involved. How-
ever, the consideration of symmetry information is closely related
with the stereo-specificity of enzymes (e.g., pro-chirality) and is
not easily solvable.

4.3. Identifying

the Network

Modularity

Some recent works focused on network modularity and its evolu-
tionary implications in addition to pathways (14, 31). Strangely,
the substrate–product graph has not been used to identify the
modularity of metabolic networks; this may be attributable to
the ambiguous definition of modularity.

A common pitfall in assessing network modularity is the use
of KEGG metabolic maps as functional categories. These maps
are drawn with aesthetic considerations; e.g., the same pathways
are drawn multiple times for an easier understanding, and there is
no well-defined criterion for omitting currency metabolites.
Consequently, most maps contain multiple functional modules
in metabolism. This observation is evident when the KEGG
maps are compared with the MetaCyc pathway repository, the
other comprehensive pathway resource for all organisms (see
Chapter 11). The MetaCyc contains over 1,400 pathway modules
in contrast to 160 KEGG maps (32). The lack of atom-resolved
guidelines for the modularity of metabolites hampers a proper
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comparison between KEGG maps (substrate graphs with duplica-
tion), MetaCyc pathways (bipartite graphs in LISP format), and
the substrate–product representation for computing pathways.
Therefore, the study of modularity remains at an immature stage
and provides a number of interesting research topics.

5. Future
Perspectives

Many researchers fail to recognize the proper representation of
metabolic networks and their existing variations. It is crucial, espe-
cially for computational biologists, to understand the purpose of
network representation and its appropriate use in a relevant con-
text. To fully utilize the power of network analysis, more biological
understanding is necessary. In a short term, we need to define
biologically justifiable network modules. The use of KEGG path-
way maps or similar classifications as the modularity standard is
scientifically indefensible. Furthermore, a public database for
atomic mappings that is easily understandable and applicable
must be established to facilitate application of the
substrate–product graph with atomic information by nonexperts.
It should be noted that the substrate graph can be easily biased
by the treatment of generic reactions and by the definition of
currency metabolites (the KEGG RPAIR database does not
recognize this problem). In view of the lack of standard names or
identifiers even for basic compounds, however, it would be a chal-
lenging task to establish a common repository for metabolic path-
ways and associated information in a single institution. In this
respect, a publicly shared portal may be a solution so that we can
establish a community-based repository for metabolic information
(33). In a longer term, the use of artificial chemical network to
study the evolution of metabolism provides an interesting perspec-
tive because the fortuity of the real world renders evolutionary
analysis possible only with such theoretical simulations (34).
However, these trials should incorporate, at least, elemental infor-
mation, such as carbon, nitrogen and sulfur, because their balance
is crucial in understanding the metabolism.
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