Aritalab:Lecture/JSBi/Test/Math

From Metabolomics.JP
< Aritalab:Lecture | JSBi/Test(Difference between revisions)
Jump to: navigation, search
m
m
Line 1: Line 1:
 
=確率=
 
=確率=
  
* [[Aritalab:Lecture/Basic/Expectation|期待値・平均について]]
+
* [[Aritalab:Lecture/Basic/Expectation|期待値と分散について]]
* [[Aritalab:Lecture/Basic/Variance|分散・共分散について]]
+
  
===ベイズ推定===
 
ベイズの定理は以下のように表される。
 
:<math>P(A|B) = P(B|A)P(A)/P(B)</math>
 
ここでP(A)を事前確率、P(A|B)を(Bが起きることを知った上でのAが起きる確率という意味の)事後確率と呼ぶ。
 
 
<!---
 
参考 [http://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%B3%E3%83%86%E3%82%A3%E3%83%BB%E3%83%9B%E3%83%BC%E3%83%AB%E5%95%8F%E9%A1%8C モンティ・ホール問題]
 
:3つの扉のうち1つだけに賞品が入っている。ただし扉は次のように2段階で選べる。
 
まず回答者は3つの扉からどれか1つを選ぶ。
 
次に、答を知っている司会者が、選んでいない扉で賞品の入っていない扉1つを開けてみせる。ただし、回答者が当たりの扉を選んでいる場合は、残りの扉からランダムに1つを選んで開けるとする。このあと回答者は扉を1回選び直してもよい。
 
2で扉を換えるのと換えないのと、どちらが当る確率が高いか?
 
--->
 
 
=分布=
 
=分布=
 
==正規分布==
 
==正規分布==

Revision as of 14:23, 19 May 2011

Contents

確率

分布

正規分布

よく見る釣鐘型の分布。どんな分布でも、その中から要素をランダムに抽出して和をとったものの分布は、正規分布に近づく(中心極限定理)。期待値が0, 分散が1になるようにスケーリングしたものを標準正規分布といい、N(0,1)と書く。

正規分布表

標準正規分布表の見方。

z 0.0 0.2 0.4 0.6 0.8
0.0 0.5000 0.4207 0.3446 0.2743 0.2119
1.0 0.1587 0.1151 0.0808 0.0548 0.0359
2.0 0.0228 0.0139 0.0082 0.0047 0.0026
3.0 0.0013 0.0007 0.0003 0.0002 0.0001
JSBi-Std.png

表におけるzの値は上から順に左→右方向にみる。正規分布全体の面積を1.0としたときの、 zから上側の面積を示している。例えば標準偏差が2.0以上の面積は0.0228、2.2以上の面積は0.0139。

ポアソン分布

稀にしか起こらない離散的な事象を数える際に用いる分布。 単位時間中に平均λ回発生する事象が、ぴったりk回発生する確率を

P(N=k) = \frac{e^{-\lambda}\lambda^k}{k!}
JSBi-Poisson.png

と定義する。

二項分布

コイン投げをして表裏がでる回数を記録したときにできる分布。 離散的な分布だが、フェアなコインを30回程度投げると正規分布で非常によく近似できる。

統計・推定

母集団から無作為に抽出された標本集団から、もとの母集団を統計的に推し量ることを推定という。

回帰分析

従属変数(近似したい値、目的変数ともいう)と説明変数(近似に用いるデータ)の関係を統計的に推定することを回帰分析という。 1個の説明変数から1個の従属変数を予測する場合を単回帰、説明変数を複数用いる場合を重回帰という。 従属変数をy、説明変数をxとすると

 y_i = a_{i1}x_{i1} + a_{i2}x_{i2} + ... a_{ij}x_{ij}

の形でパラメータa_{ij}を最小二乗法で決定する線形回帰が一般的。

点推定と区間推定

標本の値から、母集団の平均値や分散を予測することを点推定(数値を点として予測)と呼び、その推定がどれ位ずれているかを区間推定と呼ぶ。

Personal tools
Namespaces

Variants
Actions
Navigation
metabolites
Toolbox